博客
关于我
矩阵可逆的一种刻画方式
阅读量:535 次
发布时间:2019-03-08

本文共 551 字,大约阅读时间需要 1 分钟。

问题

若矩阵A满足 A + A T = I A+A^{\rm{T}}=I A+AT=I,则A可逆。

证明一

反证法。假设A不可逆,则

∃ x 0 ≠ 0 \exists{x_0}\ne0 x0=0,使得 A x 0 = 0 A{x_0}=0 Ax0=0,则
x 0 A T = ( A x 0 ) T = 0 T {x_0}{A^{\rm{T}}} = {(A{x_0})^{\rm{T}}} = {0^{\rm{T}}} x0AT=(Ax0)T=0T

∴ 0 ≠ x 0 T x 0 = x 0 T ( A + A T ) x 0 = x 0 T A x 0 + x 0 T A T x 0 = x 0 T 0 + 0 T x 0 = 0 \therefore 0 \ne x_0^{\rm{T}}{x_0} = x_0^{\rm{T}}(A + {A^{\rm{T}}}){x_0} = x_0^{\rm{T}}A{x_0} + x_0^{\rm{T}}{A^{\rm{T}}}{x_0} = x_0^{\rm{T}}0 + {0^{\rm{T}}}{x_0} = 0 0=x0Tx0=x0T(A+AT)x0=x0TAx0+x0TATx0=x0T0+0Tx0=0

矛盾,所以A可逆。

证明二

转载地址:http://fulnz.baihongyu.com/

你可能感兴趣的文章
MySql-2019-4-21-复习
查看>>
mysql-5.6.17-win32免安装版配置
查看>>
mysql-5.7.18安装
查看>>
MySQL-8.0.16 的安装与配置
查看>>
MySQL-Buffer的应用
查看>>
mysql-cluster 安装篇(1)---简介
查看>>
mysql-connector-java.jar乱码,最新版mysql-connector-java-8.0.15.jar,如何愉快的进行JDBC操作...
查看>>
mysql-connector-java各种版本下载地址
查看>>
mysql-EXPLAIN
查看>>
MySQL-Explain的详解
查看>>
mysql-group_concat
查看>>
MySQL-redo日志
查看>>
MySQL-【1】配置
查看>>
MySQL-【4】基本操作
查看>>
Mysql-丢失更新
查看>>
Mysql-事务阻塞
查看>>
Mysql-存储引擎
查看>>
mysql-开启慢查询&所有操作记录日志
查看>>
MySQL-数据目录
查看>>
MySQL-数据页的结构
查看>>